3.14.2 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1302]

Optimal. Leaf size=180 \[ \frac {2 \left (a^2 B-b^2 B+2 a b (A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 b (3 b B+4 a C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (b+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2*(a^2*B-b^2*B+2*a*b*(A-C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/
2))/d+2/3*(6*a*b*B+b^2*(3*A+C)+a^2*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*
d*x+1/2*c),2^(1/2))/d+2/3*C*(b+a*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/3*b*(3*B*b+4*C*a)*sin(d*x+c)/d/
cos(d*x+c)^(1/2)+2/3*a^2*(A-C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.38, antiderivative size = 180, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {4197, 3126, 3110, 3102, 2827, 2720, 2719} \begin {gather*} \frac {2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (a^2 (A+3 C)+6 a b B+b^2 (3 A+C)\right )}{3 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (a^2 B+2 a b (A-C)-b^2 B\right )}{d}+\frac {2 a^2 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 b (4 a C+3 b B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+b)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(a^2*B - b^2*B + 2*a*b*(A - C))*EllipticE[(c + d*x)/2, 2])/d + (2*(6*a*b*B + b^2*(3*A + C) + a^2*(A + 3*C))
*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*b*(3*b*B + 4*a*C)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) + (2*a^2*(A -
C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*C*(b + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \frac {(b+a \cos (c+d x))^2 \left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 C (b+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {(b+a \cos (c+d x)) \left (\frac {1}{2} (3 b B+4 a C)+\frac {1}{2} (3 A b+3 a B+b C) \cos (c+d x)+\frac {3}{2} a (A-C) \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 b (3 b B+4 a C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 C (b+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {4}{3} \int \frac {\frac {1}{4} \left (-3 A b^2-6 a b B-4 a^2 C-b^2 C\right )-\frac {3}{4} \left (a^2 B-b^2 B+2 a b (A-C)\right ) \cos (c+d x)-\frac {3}{4} a^2 (A-C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b (3 b B+4 a C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (b+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {8}{9} \int \frac {-\frac {3}{8} \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right )-\frac {9}{8} \left (a^2 B-b^2 B+2 a b (A-C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b (3 b B+4 a C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (b+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\left (-a^2 B+b^2 B-2 a b (A-C)\right ) \int \sqrt {\cos (c+d x)} \, dx-\frac {1}{3} \left (-6 a b B-b^2 (3 A+C)-a^2 (A+3 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \left (a^2 B-b^2 B+2 a b (A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 \left (6 a b B+b^2 (3 A+C)+a^2 (A+3 C)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 b (3 b B+4 a C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 C (b+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 7.63, size = 2779, normalized size = 15.44 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

((2*I)*a*A*b*Cos[c + d*x]^4*Csc[c]*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((2*E^((2*I)
*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos
[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]
])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/
4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin
[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c
] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])
) + (I*a^2*B*Cos[c + d*x]^4*Csc[c]*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((2*E^((2*I)
*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos
[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]
])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/
4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin
[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c
] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])
) - (I*b^2*B*Cos[c + d*x]^4*Csc[c]*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((2*E^((2*I)
*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos
[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]
])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/
4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin
[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c
] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])
) - ((2*I)*a*b*C*Cos[c + d*x]^4*Csc[c]*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((2*E^((
2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))
*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[
2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2
, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))
*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*C
os[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d
*x])) + (Cos[c + d*x]^(9/2)*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-2*(2*a*A*b + a^2
*B - 2*b^2*B - 4*a*b*C + 2*a*A*b*Cos[2*c] + a^2*B*Cos[2*c])*Csc[c]*Sec[c])/d + (4*a^2*A*Cos[d*x]*Sin[c])/(3*d)
 + (4*a^2*A*Cos[c]*Sin[d*x])/(3*d) + (4*b^2*C*Sec[c]*Sec[c + d*x]^2*Sin[d*x])/(3*d) + (4*Sec[c]*Sec[c + d*x]*(
b^2*C*Sin[c] + 3*b^2*B*Sin[d*x] + 6*a*b*C*Sin[d*x]))/(3*d)))/((b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*
x] + A*Cos[2*c + 2*d*x])) - (4*a^2*A*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcT
an[Cot[c]]]^2]*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1
 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x -
ArcTan[Cot[c]]]])/(3*d*(b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c
]^2]) - (4*A*b^2*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a +
b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[
Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d
*(b + a*Cos[c + d*x])^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (8*a*b*B*Cos[c
 + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])^2*(A +
 B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[
1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(b + a*Cos[c + d*x])^
2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*a^2*C*Cos[c + d*x]^4*Csc[c]*Hyper
geometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Se
c[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 ...

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1302\) vs. \(2(218)=436\).
time = 0.29, size = 1303, normalized size = 7.24

method result size
default \(\text {Expression too large to display}\) \(1303\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1
)/sin(1/2*d*x+1/2*c)^3*(-A*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))-3*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d
*x+1/2*c),2^(1/2))+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2
*c),2^(1/2))*a^2-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))*b^2-3*a^2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))-b^2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),
2^(1/2))+2*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))*sin(1/2*d*x+1/2*c)^2*a^2+6*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*b^2-6*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*a^2+6*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*b^2+6*C*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*a^2+2*C*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+
1/2*c)^2*b^2+6*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2-12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^2+
6*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-6*
a*b*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*C*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+8*A*co
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*a^2-8*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2+2*A*cos(1/2*d*x+1/2*
c)*sin(1/2*d*x+1/2*c)^2*a^2+2*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2-12*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2*a*b+12*B*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^
2*a*b+12*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
*sin(1/2*d*x+1/2*c)^2*a*b+12*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a*b-24*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x
+1/2*c)^4*a*b)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.42, size = 292, normalized size = 1.62 \begin {gather*} \frac {\sqrt {2} {\left (-i \, {\left (A + 3 \, C\right )} a^{2} - 6 i \, B a b - i \, {\left (3 \, A + C\right )} b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, {\left (A + 3 \, C\right )} a^{2} + 6 i \, B a b + i \, {\left (3 \, A + C\right )} b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a^{2} - 2 i \, {\left (A - C\right )} a b + i \, B b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a^{2} + 2 i \, {\left (A - C\right )} a b - i \, B b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (A a^{2} \cos \left (d x + c\right )^{2} + C b^{2} + 3 \, {\left (2 \, C a b + B b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*(A + 3*C)*a^2 - 6*I*B*a*b - I*(3*A + C)*b^2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*
x + c) + I*sin(d*x + c)) + sqrt(2)*(I*(A + 3*C)*a^2 + 6*I*B*a*b + I*(3*A + C)*b^2)*cos(d*x + c)^2*weierstrassP
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-I*B*a^2 - 2*I*(A - C)*a*b + I*B*b^2)*cos(d*x + c)^
2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(I*B*a^2 + 2*I
*(A - C)*a*b - I*B*b^2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(
d*x + c))) + 2*(A*a^2*cos(d*x + c)^2 + C*b^2 + 3*(2*C*a*b + B*b^2)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8010 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 6.50, size = 268, normalized size = 1.49 \begin {gather*} \frac {A\,a^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,B\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,A\,a\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {4\,C\,a\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^2*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(A*a^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*B*a^2*ellipticE(c/2
 + (d*x)/2, 2))/d + (2*A*b^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*C*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (4*A*a
*b*ellipticE(c/2 + (d*x)/2, 2))/d + (4*B*a*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*b^2*sin(c + d*x)*hypergeom(
[-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*b^2*sin(c + d*x)*hyper
geom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (4*C*a*b*sin(c + d*x
)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________